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Abstract

This work deals with the solution of an inverse problem of parameter estimation involving heat and mass transfer in

capillary porous media, as described by the dimensionless linear Luikov�s equations. The physical problem under

picture involves the drying of a moist porous one-dimensional medium. The main objective of this paper is to simul-

taneously estimate the dimensionless parameters appearing in the formulation of the physical problem by using

transient temperature and moisture content measurements taken inside the medium. The inverse problem is solved by

using the Levenberg–Marquardt method of minimization of the least-squares norm with simulated measurements.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The phenomena of coupled heat and mass transfer in

capillary porous media has been drawing the attention

of research groups for a long time, because of its im-

portance in several practical applications that are still

quite relevant nowadays, such as drying and moisture

migration in soils and construction materials. For the

mathematical modeling of such phenomena, Luikov [1]

has proposed a model based on a system of coupled

diffusion equations, which takes into account the effects

of the temperature gradient on the moisture migration.

The computation of temperature and moisture con-

tent fields in capillary porous media, from the knowl-

edge of initial and boundary conditions, as well as of the

thermophysical properties appearing in the formulation,

constitutes a direct problem of heat and mass transfer [1–

3]. Such type of direct problem, based on Luikov�s
theory, was solved analytically through different ap-

proaches, including the classical integral transform

technique [2]. Lobo et al. [4] found that the associated

eigenvalue problem, required for the solution with this

technique, had complex eigenvalues that were not ac-

counted for in previous works. The effects on the solu-

tion of including one pair of conjugate complex

eigenvalues were critically addressed by Lobo et al. [4],

while the inclusion of complex eigenvalues of higher

order were discussed in Ref. [5]. The use of the gener-

alized integral transform technique (GITT), with simpler

eigenvalue problems involving analytical eigenfunctions,

can avoid the calculation of complex eigenvalues for

Luikov�s formulation. For more details on the use of

such hybrid numerical–analytical technique, the reader

is referred to [6–8]. We note that numerical techniques

have also been used for the solution of Luikov�s system
of equations [9–11].

Appropriately formulated direct problems are

mathematically classified as well-posed, that is, their

solutions satisfy the requirements of existence, unique-

ness and stability with respect to the input data [12–17].

On the other hand, the simultaneous estimation of

thermophysical and boundary condition parameters that
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appear in Luikov�s formulation, by using temperature

and/or moisture content measurements taken in the

medium, is an inverse problem of coupled heat and mass

transfer [12–17]. Generally, inverse problems are math-

ematically classified as ill-posed, that is, their solutions

may not satisfy the requirements of existence, unique-

ness and stability under small perturbations in the input

data [12–17]. Despite the ill-posed character, the solu-

tion of an inverse problem can be obtained through its

reformulation in terms of a well-posed problem, such as

a minimization problem associated with some kind of

regularization (stabilization) technique. Different meth-

ods based on such an approach have been successfully

used in the past for the estimation of parameters and

functions, in linear and non-linear inverse problems

[12–28].

Recently, several articles dealing with the solution of

inverse problems of coupled heat and mass transfer

appeared in the literature [18–20,23–28]. Boundary in-

verse problems were solved in Refs. [26,27] by using the

conjugate gradient method of function estimation. A

parameter estimation problem was solved in Ref. [28],

involving the identification of the initial condition, the

boundary mass transfer coefficient and of two parame-

ters appearing in the definition of the mass diffusion

coefficient during drying. In [28], the energy conserva-

tion equation was written by using a lumped approach

and Fick�s second law described the moisture diffusion

process, with a diffusion coefficient dependent on tem-

perature and moisture content. Refs. [18–20,23–25] dealt

with the estimation of parameters appearing in Luikov�s
formulation, by utilizing the Levenberg–Marquardt

method of minimization of the least-squares norm with

temperature measurements. The estimation of moisture

diffusivity as a function of temperature and moisture

content was examined by Kanevce et al. [23,24]. Later,

they examined the estimation of other parameters ap-

pearing in the formulation [25]. In Ref. [18], the Kos-

sovitch, Luikov and heat transfer Biot numbers were

simultaneously estimated by using only temperature

measurements in Luikov�s linear dimensionless formu-

lation. The effects of lateral heat losses on the accuracy

of such estimated dimensionless numbers were examined

in [19] and, recently, the D-optimum experimental de-

sign [12–14] was applied for the selection of the heating

procedure, in order to reduce the confidence intervals of

the estimated parameters [20]. We note that the physical

problem considered in [23–25,28] involved the drying of

thin infinitely long samples of porous materials, heated

by forced convection on both sides. On the other hand,

Nomenclature

Bim dimensionless mass transfer coefficient de-

fined by Eq. (2h)

Biq dimensionless heat transfer coefficient de-

fined by Eq. (2g)

C measured moisture content

E vector with estimated values for temperature

and moisture content

I number of transient measurements taken

per sensor

J sensitivity coefficients

J sensitivity matrix

Ko Kossovitch number defined by Eq. (2i)

L number of unknown parameters

Lu Luikov number defined by Eq. (2e)

M number of temperature sensors

M vector with temperature and moisture con-

tent measured data

N number of moisture content sensors

P vector of unknown parameters

Pn Posnov number defined by Eq. (2f)

Q dimensionless heat flux defined by Eq. (2c)

S weighted least-squares norm defined by Eq.

(3)

W weighting matrix given by Eq. (4c)

X dimensionless position defined by Eq. (2j)

Y measured temperature

Greek symbols

/ dimensionless moisture content defined by

Eq. (2b)

s dimensionless time defined by Eq. (2d)

e phase conversion factor

d thermogradient coefficient

h dimensionless temperature defined by Eq.

(2a)

r standard deviation of the temperature mea-

surement errors

r� standard deviation of the moisture content

measurement errors

Subscripts

i refers to the measurement time si
l refers to the unknown parameters

n refers to the moisture content sensor num-

ber

m refers to the temperature sensor number

Superscripts

k iteration number

T transpose
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the physical problem considered in [18–20] involved the

drying of one-dimensional samples of porous materials,

with one of the sides put into contact with a heater,

while the other was open to the surrounding air.

In this paper, we extend the analysis of our previous

works [18–20] and examine the effects of utilizing mea-

surements of moisture content, in addition to tempera-

ture measurements, for estimating simultaneously all

parameters appearing in Luikov�s linear dimensionless

formulation. The sensitivity coefficients and the deter-

minant of the information matrix are examined in order

to design the experiment and to detect linear dependence

among the unknown parameters. The associated direct

problem is solved with the GITT [3,6–8]. The Levenberg–

Marquardt method [12,13,18–25] is applied as the mini-

mization procedure of the least-squares norm, in order to

estimate the parameters. Simulated temperature and

moisture content measurements containing random er-

rors are used in the inverse analysis, as described below.

2. Direct problem

The physical problem involves a one-dimensional

capillary porous medium, initially at uniform tempera-

ture and uniform moisture content. One of the bound-

aries, which is impervious to moisture transfer, is in

direct contact with a heater. The other boundary is in

contact with the dry surrounding air, thus resulting in a

convective boundary condition for both the temperature

and the moisture content, as illustrated in Fig. 1. The

linear system of equations proposed by Luikov [1], with

associated initial and boundary conditions, for the

modeling of such physical problem involving heat and

mass transfer in a capillary porous media, can be written

in dimensionless form as:

ohðX ; sÞ
os

¼ o2hðX ; sÞ
oX 2

� eKo
o/ðX ; sÞ

os
in 0 < X < 1; for s > 0 ð1aÞ

o/ðX ; sÞ
os

¼ Lu
o2/ðX ; sÞ

oX 2
� LuPn

o2hðX ; sÞ
oX 2

in 0 < X < 1; for s > 0 ð1bÞ

hðX ; 0Þ ¼ 0; /ðX ; 0Þ ¼ 0; for s ¼ 0;

in 0 < X < 1 ð1c; dÞ

ohð0; sÞ
oX

¼ �Q;
o/ð0; sÞ

oX
� Pn

ohð0; sÞ
oX

¼ 0;

at X ¼ 0; for s > 0 ð1e; fÞ

ohð1; sÞ
oX

þ Biqhð1; sÞ ¼ Biq � ð1� eÞKoLuBim½1� /ð1; sÞ�;

at X ¼ 1; for s > 0 ð1gÞ

o/ð1; sÞ
oX

þ Bi�m/ð1; sÞ ¼ Bi�m � PnBiq½hð1; sÞ � 1�;

at X ¼ 1; for s > 0 ð1hÞ

where the following dimensionless groups were defined

hðX ; sÞ ¼ T ðx; tÞ � T0
Ts � T0

; /ðX ; sÞ ¼ u0 � uðx; tÞ
u0 � u�

;

Q ¼ ql
kðTs � T0Þ

; s ¼ at
l2

ð2a–dÞ

Lu ¼ am
a
; Pn ¼ d

Ts � T0
u0 � u�

; Biq ¼
hl
k
;

Bim ¼ hml
km

; Ko ¼ rðu0 � u�Þ
cðTs � T0Þ

; X ¼ x
l

ð2e–jÞ

Bi�m ¼ Bim½1� ð1� eÞPnKoLu� ð2kÞ

The properties of the porous medium appearing

above include the thermal diffusivity (a), the moisture

diffusivity (am), the thermal conductivity (k), the mois-

ture conductivity (km) and the specific heat (c). Other

physical quantities appearing in the dimensionless

groups of Eqs. (2) are the heat transfer coefficient (h),
the mass transfer coefficient (hm), the thickness of porous
medium (l), the prescribed heat flux (q), the latent heat

of evaporation of water (r), the temperature of the sur-

rounding air (Ts), the uniform initial temperature in the

medium (T0), the moisture content of the surrounding

air (u�), the uniform initial moisture content in the me-

dium (u0), the thermogradient coefficient (d) and the

phase conversion factor (e). Lu, Pn and Ko denote the

Luikov, Posnov and Kossovitch numbers, respectively.

Problem (1) is referred to as a direct problem when

initial and boundary conditions, as well as all para-

meters appearing in the formulation, are known. The

objective of the direct problem is to determine the di-

mensionless temperature and moisture content fields,

hðX ; sÞ and /ðX ; sÞ, respectively, in the capillary porous

media. The direct problem was solved here by applying

the GITT [3,6–8,18–20]. The GITT is a powerful hybrid

numerical–analytical approach, which has been suc-

cessfully applied to obtain benchmark solutions for dif-

ferent classes of linear and non-linear diffusion/

convection problems [3,6–8]. Such a technique, as ap-

plied to time dependent problems, includes the following

basics steps: (i) choose an auxiliary eigenvalue problem;Fig. 1. Geometry for the drying of a moist porous medium.
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(ii) develop the appropriate transform/inverse formulae

pair; (iii) integral transform the original problem by

substituting the inverse formula into non-transformable

terms or by using the integral balance approach; (iv)

solve the resulting coupled system of ordinary differen-

tial equations in the time variable; and (v) apply the

inverse formula to the transformed field in order to

obtain the solution for the original problem. For the

sake of brevity, we omit details of GITT as applied to

the present problem, but they can be readily found in

Refs. [3,6–8,18–20].

3. Inverse problem

For the inverse problem of interest here, the parame-

ters Lu, Pn, Ko, e, Biq and Bim are regarded as unknown

quantities. For the estimation of such parameters, we

consider available the transient temperature measure-

ments Yim taken at the locations Xm, m ¼ 1; . . . ;M , as well

as the moisture content measurements Cin taken at the

locations X �
n , n ¼ 1; . . . ;N . The subscript i above refers to

the time when the measurements are taken, that is, ti, for
i ¼ 1; . . . ; I. We note that the measurements may contain

random errors, but all the other quantities appearing in

the formulation of the direct problem are supposed to be

known exactly. Also, most likely the standard deviation

of the temperature measurements is different from that of

the moisture content measurements.

Inverse problems are ill-posed [12–17]. Several

methods of solution of inverse problems, such as the

one used here, involve their reformulation in terms of

well-posed minimization problems. We assume the mea-

surement errors to be additive, uncorrelated and nor-

mally distributed, with known standard deviation and

zero mean. Since the standard deviation of the mea-

surements is not constant, despite being assumed as

known, the solution of the present inverse problem is

obtained through the minimization of the weighted

least-squares norm in order to obtain minimum variance

estimates [12]. Such a norm can be written as

SðPÞ ¼ ½M � EðPÞ�TW½M � EðPÞ� ð3Þ

where PT ¼ ½Biq;Bim; Lu; Pn;Ko; e� denotes the vector of

unknown parameters and the superscript T above de-

notes transpose. The vector ½M � EðPÞ�T is given by

½M � EðPÞ�T 	 ½ð~MM1 �~EE1Þ; ð~MM2 �~EE2Þ; . . . ; ð~MMI �~EEIÞ�
ð4aÞ

where ð~MMi �~EEiÞ is a row vector containing the differ-

ences between measured and estimated temperatures

and moisture contents at the measurement positions Xm,

m ¼ 1; . . . ;M , and X �
n , n ¼ 1; . . . ;N , respectively, at time

ti, that is,

ð~MMi �~EEiÞ ¼ ½Yi1 � hi1; Yi2 � hi2; . . . ; YiM � hiM ;Ci1

� /i1;Ci2 � /i2; . . . ;CiN � /iN � ð4bÞ

The estimated temperatures and moisture content are

obtained from the solution of the direct problem, Eqs.

(1), at the respective measurement locations, by using

estimates for the unknown parameters Pl, l ¼ 1; . . . ; L.
The weighting matrix W is a diagonal matrix with

elements given by the inverse of the variances of the

measurements [12,13], that is,

W ¼

1
r2
11

0 
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3
7777777777777777777777777777777777775

ð4cÞ

4. Method of solution for the inverse problem

The present inverse problem of parameter estimation

is solved with the Levenberg–Marquardt method of

minimization of the least-squares norm [12,13,18–25].

Such a method was first derived by Levenberg [21] in

1944, by modifying the ordinary least-squares norm.

Later, in 1963, Marquardt [22] derived basically the

same technique by using a different approach. Marqu-

ardt�s intention was to obtain a method that would tend

to the Gauss method in the neighborhood of the mini-

mum of the ordinary least-squares norm, and would

tend to the steepest descent method in the neighborhood

of the initial guess used for the iterative procedure [12].

The iterative procedure of the Levenberg–Marquardt

method is given by:

Pkþ1 ¼ Pk þ ½ðJkÞTWJk þ lkXk ��1ðJkÞTW½M � EðPkÞ�
ð5Þ

where Jk is the sensitivity matrix, lk is a positive scalar

named damping parameter, Xk is a diagonal matrix and

the superscript k denotes the iteration number. The

purpose of the matrix term lk Xk appearing in Eq. (5)

is to damp oscillations and instabilities due to the ill-

conditioned character of the problem, by making its
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components large as compared to those of JTWJ, if

necessary. The damping parameter is made large in the

beginning of the iterations, so that the matrix JTWJ is

not required to be non-singular and the Levenberg–

Marquardt method tends to the Steepest Descent meth-

od, that is, a very small step is taken in the negative

gradient direction. The parameter lk is then gradually

reduced as the iteration procedure advances to the so-

lution of the parameter estimation problem and then

the Levenberg–Marquardt method tends to the Gauss

method [12]. However, if the errors inherent to the

measured data are amplified, generating instabilities on

the solution as a result of the ill-posed character of the

problem, the damping parameter is automatically in-

creased. Such an automatic control of the damping para-

meter makes the Levenberg–Marquardt method a quite

robust and stable estimation procedure, so that it does

not require the use of the discrepancy principle in the

stopping criterion to become stable, like the conjugate

gradient method [13,14]. Therefore, usual stopping cri-

teria can be used for the Levenberg–Marquardt, such as

ðiÞ SðPkþ1Þ < e1 ð6aÞ

ðiiÞ kðJkÞT½Y � TðPkÞ�k < e2 ð6bÞ

ðiiiÞ kPkþ1 � Pkk < e3 ð6cÞ

where e1, e2 and e3 are user prescribed tolerances and

k 
 k is the vector Euclidean norm.

The criterion given by Eq. (6a) tests if the least-

squares norm is sufficiently small, which is expected in the

neighborhood of the solution for the problem. Similarly,

Eq. (6b) checks if the norm of the gradient of SðPÞ is

sufficiently small, since it is expected to vanish at the

point where SðPÞ is minimum. The last criterion given by

Eq. (6c) results from the fact that changes in the vector of

parameters are very small when the method has con-

verged. Generally, these three stopping criteria need to be

tested and the iterative procedure of the Levenberg–

Marquardt method is stopped if any of them is satisfied.

We note that, when the measurement errors start to cause

oscillations on the inverse problem solution and the

damping parameter lk is automatically increased by

the Levenberg–Marquardtmethod, the increments on the

parameters become very small, so that the iterative pro-

cedure is stopped through the criterion given by Eq. (6c).

The sensitivity matrix is defined as

JðPÞ 	 oETðPÞ
oP

� �T

¼

o~EET
1

oP1

o~EET
1

oP2

o~EET
1

oP3

 
 
 o~EET

1

oPL
o~EET

2

oP1

o~EET
2

oP2

o~EET
2

oP3

 
 
 o~EET

2

oPL

..

. ..
. ..

. ..
.

o~EET
I

oP1

o~EET
I

oP2

o~EET
I

oP3

 
 
 o~EET

I
oPL

2
6666664

3
7777775

ð7aÞ

where

o~EET
i

oPl
¼

ohi1
oPl
ohi2
oPl

..

.

ohiM
oPl
o/i1
oPl
o/i2
oPl

..

.

o/iN
oPl

2
6666666666666664

3
7777777777777775

; for i ¼ 1; . . . ; I and l ¼ 1; 2; . . . ; L

ð7bÞ

The elements of the sensitivity matrix are the sensitivity

coefficients. They are defined as the first derivative of the

estimated quantities with respect to each of the un-

known parameters Pl, l ¼ 1; . . . ; L. The sensitivity coef-

ficients are required to be large in magnitude, so that the

estimated parameters are not very sensitive to mea-

surement errors. Also, the columns of the sensitivity

matrix are required to be linearly independent in order

to have the matrix JTWJ invertible. In problems in-

volving parameters with different orders of magnitude,

the sensitivity coefficients with respect to the various

parameters may also differ by several orders of magni-

tude, creating difficulties in their comparison and iden-

tification of linear dependence. These difficulties can be

alleviated through the analysis of the normalized sensi-

tivity coefficients, which are obtained by multiplying the

original sensitivity coefficients by the parameters that

they are referred to. Note that the normalized sensitiv-

ity coefficients have the units of the measured variable,

either temperature or moisture content; hence, they are

compared as having the magnitude of the measured

variable as a basis.

5. Statistical analysis

After the minimization of the least-squares norm gi-

ven by Eq. (3), a statistical analysis can be performed in

order to obtain confidence intervals and a confidence

region for the estimated parameters [12]. Confidence in-

tervals at the 99% confidence level are obtained as:

P̂Pl � 2:576rP̂Pl 6 Pl 6 P̂Pl þ 2:576rP̂Pl ; l ¼ 1; . . . ; L ð8Þ

where P̂Pl are the values estimated for the unknown pa-

rameters, Pl, for l ¼ 1; . . . ; L, and rP̂Pl are the standard

deviations obtained from the covariance matrix of the

estimated parameters.

The confidence region can be computed from [12]:

ðP̂P � PÞTV�1ðP̂P � PÞ6 v2
L ð9Þ
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where v2
L is the chi-square distribution for L degrees of

freedom and for a given confidence level. Also, V is the

covariance matrix of the estimated parameters, which is

given by [12]:

V ¼ ðJTWJÞ�1 ð10Þ

We note that Eq. (10) is exact for linear estimation

problems and is approximately used for non-linear pa-

rameter estimation problems such as the one under

picture in this paper, where the sensitivity coefficients are

functions of the unknown parameters.

6. Experimental design

The design of optimum experiments is of capital

importance in parameter and in function estimations. It

basically consists in examining a priori some kind of

measure of the accuracy of the estimated quantities in

order to choose experimental variables, such as the

number and location of sensors, experimental duration,

etc., so that minimum variance estimates are obtained

via the inverse analysis. Optimum experiments can be

designed by minimizing the hypervolume of the confi-

dence region of the estimated parameters. The minimi-

zation of the hypervolume of the confidence region given

by Eq. (9) can be obtained by maximizing the determi-

nant of V�1, in the so-called D-optimum design [12–

14,17].

For the design of optimum experiments, let us con-

sider the weighting matrix W as the identity matrix.

Therefore, the elements Fr;s, r, s ¼ 1; . . . ; L, of the so-

called information matrix F 	 JTJ, are given by:

Fr;s 	 ½JTJ�r;s

¼
XI

i¼1

XM
m¼1

ohim

oPr

ohim

oPs


 �"
þ
XN
n¼1

o/in

oPr

o/in

oPs


 �#
;

for r; s ¼ 1; . . . ; L ð11Þ

where I is the number of transient measurements and L
is the number of unknown parameters.

We note that for non-linear estimation problems the

analyses of the sensitivity coefficients and of the deter-

minant of F are not global, because these quantities are

functions of the unknown parameters. Therefore, a

priori estimated values for the parameters are required

for the design of optimum experiments. In practical

situations involving non-linear estimation problems, the

optimum design of the experiment is performed in an

iterative manner. Low-accuracy estimates for the un-

known parameters, which can be obtained from previ-

ous experiments or from literature data, are used in the

initial experimental design. As more accurate estimates

are obtained with new experiments, the experimental

design is improved and the accuracy of the estimated

parameters is further enhanced.

7. Results and discussion

For the design of optimum experiments and for the

solution of the present inverse problem of parameter

Table 1

Test-cases examined

Physical variables Wood Ceramics

Test-case 1 Test-case 2 Test-case 3 Test-case 4

l (m) 0.05 0.05 0.05 0.05

q0 (kg/m3) 370 370 370 2000

hq (W/m2 K) 22.5 1.6 22.5 17

hm (kg/m2 s �M) 2.5� 10�6 6.0� 10�8 2.5� 10�6 1.6� 10�5

kq (W/mK) 0.65 0.65 0.65 0.34

km (kg/m s �M) 2.2� 10�8 2.2� 10�8 2.2� 10�8 2.4� 10�7

d (�M/K) 2.0 2.0 2.0 0.56

cq (J/kgK) 2500 2500 2500 607

cm (kg/kg �M) 10�2 10�2 10�2 1.8� 10�3

k (J/kg) 2.5� 106 2.5� 106 2.5� 106 2.5� 106

T0 (�C) 24 24 24 24

Ts (�C) 26 26 36 30

u0 (�M) 86 86 86 80

u� (�M) 8 8 8 40

Biq 1.7 0.1 1.7 2.5

Bim 5.7 0.1 5.7 2.5

Lu 0.008 0.008 0.008 0.2

Pn 0.05 0.05 0.3 0.084

Ko 390 390 65 49

e 0.2 0.2 0.2 0.2
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estimation, we examine four test-cases of practical in-

terest, involving different materials and different

boundary conditions on the surface of the body in

contact with the surrounding air. Table 1 summarizes

the four test-cases examined in this work. Test-cases 1–3

deal with the drying of wood, while test-case 4 deals with

the drying of ceramics. The physical properties pre-

sented in Table 1 were obtained from Ref. [9] for wood

and from Ref. [11] for ceramics. Note in Table 1 that for

all test-cases the thickness of the sample was taken as

0.05 m and the initial temperature as 24 �C.
In test-cases 1–3, dealing with the drying of wood, we

analyzed the effects of the air conditions on the deter-

minant of the information matrix. Test-case 1 involved

heat and mass transfer coefficients at the boundary

X ¼ 1 of the order of those for forced convection

(hq ¼ 22:5 W/m2 �C and hm ¼ 2:5� 10�6 kg/m2 s �M),

with the surrounding air slightly heated as compared to

the initial temperature for the medium (T0 ¼ 24 �C and

Ts ¼ 26 �C). Such air temperature was the same con-

sidered for test-case 2, but the heat and mass transfer

coefficients for this test-case were of the order of those

for natural convection (hq ¼ 1:6 W/m2 �C and hm ¼
6� 10�8 kg/m2 s �M). For test-case 3, the heat and mass

transfer coefficients utilized were the same as for test-

case 1, but the air temperature was taken as 36 �C
instead of 26 �C. Test-case 4 involved the drying of

ceramics, with heat and mass transfer coefficients of the

order of those for forced convection (hq ¼ 17 W/m2 �C
and hm ¼ 1:6� 10�5 kg/m2 s �M) with air slightly heated

(Ts ¼ 30 �C).
Fig. 2a and b present the temperature and moisture

content variations with time, respectively, for different

positions along the medium, for test-case 1. We can

notice in Fig. 2a a large decrease in the temperature for

small times, as a result of the moisture vaporization. For

larger times, temperatures in the region become positive

when vaporization effects are less important and the

temperature distribution is governed by diffusion.

The normalized sensitivity coefficients for tempera-

ture and moisture content measurements are presented

in Figs. 3 and 4, respectively, at different locations inside

the medium, for test-case 1. Fig. 3 shows that the tem-

perature sensitivity coefficients with respect to Bim and

Lu are proportional, i.e., linearly dependent. The tem-

perature sensitivity coefficients with respect to Pn and e
are practically null, while the others attain values com-

parable to the measured temperatures (see also Fig. 2a).

The temperature sensitivity coefficients with respect to

Ko and Biq are not linearly dependent with respect to the

others. Note in Fig. 3 that the temperature sensitivity

coefficients are basically not affected by the sensor po-

sition. Let us now consider the analysis of the moisture

content sensitivity coefficients presented in Fig. 4. Such a

figure shows that the moisture content sensitivity coef-

ficients with respect to Ko, Biq, Pn and e are practically

null for all measurement positions. The sensitivity co-

efficients with respect to Bim and Lu attain magnitudes of

the same order of the measured moisture content (see

Fig. 2b), but they are linearly dependent, except for

X ¼ 0. An analysis of Figs. 3 and 4 reveals the difficulty

involved in the simultaneous estimation of the dimen-

sionless parameters appearing in Luikov�s linear for-

mulation. Both temperature and moisture content

measurements do not provide useful information for the

estimation of Pn and e, because their sensitivity coeffi-

cients are practically null. Also, there is a general ten-

dency of linear dependence for the sensitivity coefficients

with respect to Bim and Lu, independently of the type of

measurement considered. However, these sensitivity co-

efficients attain values of the order of the measured

variables and the constant of proportionality between

them is different for temperature and moisture content
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Fig. 2. Temperature (a) and moisture content (b) variations

inside the body for test-case 1.
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measurements; hence, the columns of the sensitivity

matrix do not become linearly dependent.

The determinant of the information matrix is pre-

sented in Fig. 5 for test-case 1, by considering different

numbers of temperature and moisture content sensors

available for the analysis. The moisture content sensors

were located inside the medium starting from the

boundary at X ¼ 0, because at this position the sensi-

tivity coefficients with respect to Bim and Lu are not

linearly dependent, as shown by Fig. 4. The temperature

sensors were located inside the medium starting from the

boundary at X ¼ 1, although the temperatures at dif-

ferent sensor locations are equally sensitive to variations

in the parameters, as shown by Fig. 3. For the results

presented in Fig. 5, we considered available one mea-

surement per sensor per unity of dimensionless time.

Also, the curves in Fig. 5 were based on six unknown

parameters, that is, PT ¼ ½Biq;Bim; Lu; Pn;Ko; e�. We can

notice in Fig. 5, for each curve referent to the different

number of sensors, a large increase in the determinant of

the information matrix for small times and that the rate

of increase of the determinant is reduced for times

greater than 80. Therefore, a final time equal to 80 ap-

pears to be suitable for test-case 1, because very little

improvement on the accuracy of the estimated parame-

ters is expected for larger times. We note that the de-

terminant increases when more sensors are utilized,

because more information is available for the inverse

analysis.

Fig. 6 presents the determinant of the information

matrix for test-case 2, where the heat and mass transfer

coefficients at the boundary X ¼ 1 corresponded to

natural convection conditions. The frequency of mea-

surements and the number of unknown parameters are

the same as those considered for Fig. 5. A comparison of

Figs. 5 and 6 show a large reduction of the determinant

of the information matrix, when the heat and mass

transfer coefficients are decreased. This is basically due

to the reduction observed in the magnitudes of the

moisture content sensitivity coefficients and because of a

strong tendency towards linear dependence of the sen-

sitivity coefficients for several parameters, when natural

convection boundary conditions are imposed. There-

fore, Figs. 5 and 6 show that forced convection

boundary conditions should be preferred for the body

surface open to the surrounding air at X ¼ 1.

(a) (b)

(c)

Fig. 3. Normalized temperature sensitivity coefficients for test-case 1 for (a) X ¼ 0, (b) X ¼ 0:4 and (c) X ¼ 1.
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The determinant of the information matrix for test-

case 3 is presented in Fig. 7. Such as for test-case 2, the

frequency of measurements and the number of unknown

parameters are the same as those considered for Fig. 5.

We can notice in Fig. 7 that the increase of the tem-

perature of the surrounding air has the same effect of

reducing the determinant of the information matrix, as

the use of natural convection boundary conditions.

Therefore, a comparison of Figs. 5–7 reveals that forced

convection of slightly heated surrounding air should be

preferred for the boundary conditions at the open

boundary of the body at X ¼ 1, in order to improve the

accuracy of the estimated parameters.

It is interesting to note that similar results, with re-

spect to the boundary conditions and the surrounding

air temperature, were observed by Kanevce et al. [24] for

the estimation of the mass diffusion coefficient as a

function of temperature and moisture diffusivity. The

use of larger heat and mass transfer coefficients and

smaller temperatures of the surrounding air resulted in

larger values for the determinant of the information

matrix, despite the fact that the physical problem in-

volved the heating of the sample by convection on both

of its sides [24].

Let us now take into picture the analysis of test-case

4 involving the drying of ceramics. Based on the fore-

going analysis of test-cases 1–3, the boundary condition

at the open boundary of the body at X ¼ 1 for test-case

4 involved forced convection of slightly heated air, as

can be noticed in Table 1. Fig. 8 presents the determi-

nant of the information matrix for test-case 4, for six

unknown parameters, that is, PT ¼ ½Biq;Bim; Lu; Pn;Ko;
e� and for a frequency of one measurement per sensor

per unity of dimensionless time. A comparison of Figs. 5

and 8 show larger values for the determinant of the

information matrix for ceramics than for wood. As a

result, more accurate estimates are expected for the es-

timation of the dimensionless parameters appearing in

Luikov�s formulation for ceramics. The sensitivity co-

efficients for test-case 4 are not presented here for the

Fig. 4. Normalized moisture content sensitivity coefficients for test-case 1 for (a) X ¼ 0, (b) X ¼ 0:4 and (c) X ¼ 1.
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sake of brevity, but qualitatively they are quite similar to

those for test-case 1, presented in Figs. 3 and 4. There-

fore, temperature and moisture content sensitivity co-

efficients with respect to Pn and e are also rather small

for test-case 4, so that the measurements do not provide

useful information for the estimation of such parame-

ters.

The foregoing analysis reveals that, for the cases

examined, only the parameters Biq, Bim, Lu and Ko can

be simultaneously estimated by using both temperature

and moisture content measurements. Therefore, only

such four parameters are considered as unknown

quantities for the inverse analysis presented below,

based on the Levenberg–Marquardt method of mini-

mization of the least-squares norm, by using simulated

transient measurements. The parameters Pn and e are

then considered to be known exactly; but we note that

this is not a strong hypothesis, since their sensitivity
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coefficients are practically null and the measurements

are not affected by their values.

We present below in Table 2 the results obtained for

the estimation of Biq, Bim, Lu and Ko for test-case 4. For

the inverse analysis, we considered simulated tempera-

ture measurements to be available at Xm ¼ 0:9, 0.7, 0.5
and 0.0, and moisture content measurements at

X �
n ¼ 0:1, 0.2, 0.3 and 0.4. Based on the analysis of Fig.

8, the final dimensionless time was taken as 10, since the

determinant of the information matrix increases very

little for larger times. For the physical case under pic-

ture, such dimensionless time corresponds to 25 h.

Measurements were assumed available in a frequency of

one reading per sensor every 20 min. In order to examine

the accuracy of the Levenberg–Marquardt method, as

applied to the present parameter estimation approach,

we used simulated measurements containing random

measurement errors with standard deviation r ¼ r� ¼ 0

(errorless measurements), as well as r ¼ 0:01 Ymax and

r� ¼ 0:01 Cmax, where Ymax and Cmax denote the maxi-

mum measured temperature and moisture content, re-

spectively. The initial guesses for the unknown

parameters, required for the iterative procedure of the

Levenberg–Marquardt method, were taken as Bi0q ¼ 1:0,
Bi0m ¼ 5:0, Lu0 ¼ 0:02 and Ko0 ¼ 4:9. Table 2 shows that

the values were exactly recovered when errorless mea-

surements were used in the inverse analysis. Similarly,

quite accurate estimates were obtained when the mea-

surements with random errors were taken into account,

even for initial guesses as far as one order of magnitude

from the exact parameters.

8. Conclusions

In this paper we presented the solution for an inverse

problem of parameter estimation in a one-dimensional

capillary porous media, by using the dimensionless

Luikov�s model for the heat and mass transfer process.

The associated direct problem was solved with the

GITT. The present parameter estimation problem was

solved by using the Levenberg–Marquardt method of

minimization of the least-squares norm. Temperature

and moisture content measurements are assumed avail-

able for the inverse problem. Since temperature mea-

surements may contain errors with standard deviation

different from the moisture content measurements, the

weighted least-squares norm is used as the objective

function in order to obtain minimum variance estimates.

For the cases examined in this work, involving the

drying of wood and ceramics, an analysis of the sensi-

tivity coefficients and of the determinant of the infor-

mation matrix shows that it is possible to estimate

simultaneously the Luikov number, the Kossovitch

number and the Biot numbers for heat and mass

transfer. The Posnov number and the phase change

conversion factor cannot be estimated, because their

sensitivity coefficients are practically null. Results ob-

tained by using simulated measurements with random

errors illustrate the accuracy of the present approach for

the simultaneous identification of parameters in Lui-

kov�s dimensionless linear formulation.
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